73 research outputs found

    Development of All-Wood Connections with Plywood Flitch Plate and Oak Pegs

    Get PDF
    This paper proposes a new method for beam-beam connections, which include plywood as slot-in plates connected by oak pegs. A total of 96 specimens were fabricated for tests to explore the minimum required end distances and spacing between pegs parallel to the grain. A new failure mode, termed shear wedge that is different from those found in previous research, was found. A spring model was also proposed in this study to investigate the stiffness of the connections, and feasibility of EC5 to be applied on the new proposed connections was also examined. The effective number was discussed in this study and modified in accordance to the experimental results. The result of this study shows the new connections proposed do not lead to brittle failure unless failure in plywood occurred

    Single step joint: overview of European standardized approaches and experimentations

    Get PDF
    In the field of the built heritage restoration, engineers have to work with old structures made of badly preserved timber elements. The assessment of timber elements and connections is a major issue for engineers involved in a restoration project. Before thinking about any intervention technics, engineers have to properly understand how the carpentry connections fail, which parameters influence the failure modes (geometry of the joint, mechanical properties of the wood,…) and how the internal forces are distributed into the joint to finally figure out how to design the traditional carpentry connections. The present paper aims to raise those questions focusing on the Single Step Joint design. Even if this common joint between the rafter and the tie beam is geometrically simple, one may pick up three geometrical configurations of Simple Notched Joints from the past till today: the geometrical configuration ideal (GCID), the geometrical configuration perpendicular to the tie beam (GCPTB) and the geometrical configuration perpendicular to the rafter (GCPR). The first one is more recent because it requires a highest accuracy production, and so the use of the new technologies (e.g., CNC). For each one, some general design rules about the geometrical parameters of the Single Step Joint are defined by some European standards (Siem and Jorissen, 2015), but no one details how to design this connection to prevent shear cracks at the heel depth or the compressive crushing at the joint contact surfaces. Hence the design rules and the emergence of failure modes according to the geometrical parameters of the Simple Notched Joint must be defined. In order to check the design equations and the failure modes, lab tests about the three geometrical configurations of the Single Step Joint have been carried out, varying the heel depth, the shear length and the inclination of the rafter

    The influences of moisture content variation, number and width of gaps on the withdrawal resistance of self tapping screws inserted in cross laminated timber

    Get PDF
    A large experimental campaign comprised of 470 withdrawal tests was carried out, aiming to quantify the withdrawal resistance of self-tapping screws (STS) inserted in the side face of cross laminated timber (CLT) elements. In order to deeply understand the “CLT-STS” composite model, the experimental tests considered two main parameters: (i) simple and cyclic changes on moisture content (MC) and (ii) number and width of gaps. Regarding (i), three individual groups of test specimens were stabilized with 8%, 12% and 18% of moisture content and one group was submitted to a six month RH cycle (between 30% and 90% RH). Concerning (ii), different test configurations with 0 (REF), 1, 2 and 3 gaps, and widths equal to 0mm (GAP0) or 4mm (GAP4), were tested. The influences of MC and number of gaps were modeled by means of least square method. Moreover, a revision of a prediction model developed by Uibel and Blaß (2007) was proposed. The main findings of the experimental campaign were: the decrease of withdrawal resistance for specimens tested with MC=18% in most configurations; the unexpected increase of withdrawal resistance as the number of gaps with 0mm increased; and, the surprising increase of withdrawal resistance for REF specimens submitted to the RH cycle.The development of the present work was possible only thanks to the financial support of the 391 Portuguese Science Foundation (Fundação de Ciência e Tecnologia, FCT), through PhD grant SFRH / BD17392 / 79972 / 2011. Further, the valuable partnerships with the Institute of Timber Engineering and Wood393 Technology, at Graz University of Technology (Austria), and Rusticasa are gratefully acknowledged

    Fire behaviour of gypsum plasterboard wall assemblies: CFD simulation of a full-scale residential building

    Get PDF
    New trends in building energy efficiency include thermal storage in building elements that can be achieved via the incorporation of Phase Change Materials (PCM). Gypsum plasterboards enhanced with micro-encapsulated paraffin-based PCM have recently become commercially available. This work aims to shed light on the fire safety aspects of using such innovative building materials, by means of an extensive experimental and numerical simulation study. The main thermo-physical properties and the fire behaviour of PCM-enhanced plasterboards are investigated, using a variety of methods (i.e. thermo-gravimetric analysis, differential scanning calorimetry, cone calorimeter, scanning electron microscopy). It is demonstrated that in the high temperature environment developing during a fire, the PCM paraffins evaporate and escape through the failed encapsulation shells and the gypsum plasterboard's porous structure, emerging in the fire region, where they ignite increasing the effective fire load. The experimental data are used to develop a numerical model that accurately describes the fire behaviour of PCM-enhanced gypsum plasterboards. The model is implemented in a Computational Fluid Dynamics (CFD) code and is validated against cone calorimeter test results. CFD simulations are used to demonstrate that the use of paraffin-based PCM-enhanced construction materials may, in case the micro-encapsulation shells fail, adversely affect the fire safety characteristics of a building. © 2015 Elsevier Ltd. All rights reserved
    corecore